汽水兩相流雙參數測量儀表跟孔板比較
采法是*有效的回收稠油的方法,在稠油熱采過程中,注入油井蒸汽的質量流量和干度,很大程度地影響著稠油的輸出,這使得對注井蒸汽參數的測量十分重要,這屬于汽水兩相流測量的問題。
在工業過程和科學研究中,兩相流的檢測一直是檢測科學研究的一個焦點。Murdock等建立了孔板分離流模型,James等建立了改進的孔板均相流模型。以上兩模型用兩相密度比修正后,進一步提高了模型精度,并擴大了適用范圍。
兩相流動是一個隨機過程,兩相流體中的相分布在空間和時間上都是隨機的。由此隨機性在測量過程中產生的噪聲,如孔板差壓脈動,是人們在兩相流檢測的實踐中熟知的物理現象。然而,根據傳統的測量理論,此噪聲僅僅是檢測系統中的干擾信號。根據現代檢測理論的觀點,噪聲也是過程系統輸出的一種信息。通過對噪聲機理的分析,建立噪聲的統計濾波模型,便可獲得與被檢測變量相關的定量信息,從而建立噪聲檢測兩相流的實用理論模型。
1、 孔板差壓噪聲測量汽水兩相流的理論模型
假設:汽液兩相分別流過孔板;無相間動量交換;無相變過程;滿足絕熱條件。
由此得到理想化的孔板分離流模型為:
越小,差壓噪聲越大。
將式(3)的兩邊分別除以式(2)的兩邊,可得:
式(5)、(6)即為利用孔板差壓噪聲測量汽液兩相流雙參數(例如質量流量和干度)的理論模型。其物理意義明確,形式非常簡單,無須變換便可直接應用于微機儀表。
實測的汽水兩相流孔板差壓方根的相對統計方差(R),大者可達百分之幾十,小者也有百分之幾,對于干度變化的反應相當靈敏。
2、 汽水兩相流雙參數測量儀表
根據上述的模型,作者研制成功與單孔板配套的測量儀表。該儀表核心是Intel 8098 CPU,配置32K ROM和8KRAM,還包括8個LED,8個按鍵以及微型打印機。一臺開關穩壓電源為儀表和變送器提供電能。
來自壓力變送器和差壓變送器的4~20毫安直流信號經I/V轉換成1~5伏電壓信號,再經A/D變換成數字量。數字濾波和統計估計可得數學模型計算所需的P、和。并按壓力P由相應子程序計算密度和熱焓,從而算出汽水兩相流的干度、質量流量和攜帶熱量,并對流量和熱量進行累積運算。鍵盤和LED用于常數設置和結果顯示,微打可定時或立即打印結果。D/A接口輸出干度信號,RS232接口可與上位機進行通訊。儀表原理框圖如圖1所示。
圖1 儀表框圖
3、儀表在油田中的應用
利用孔板測量汽水兩相流實驗的78組數據,確定了比例系數值。以下實驗數據來自遼河油田的兩個油井。表1顯示了采用本儀表和傳統采樣法所得的干度數據的差別。表2顯示了采用本儀表和傳統孔板流量計測得的流量數據的差別。
[表1]
時間 | 9:00 | 9:15 | 9:30 | 9:45 | 10:00 | 10:15 | 10:30 | 10:45 | 11:00 |
本儀表 | 68 | 66 | 65 | 67 | 70 | 68 | 68 | 67 | 68 |
采樣 | 73 | 73 | 73 | 74 | 75 | 74 | 74 | 75 | 75 |
誤差(%) | 5 | 7 | 8 | 7 | 5 | 6 | 6 | 8 | 7 |
時間 | 9:00 | 9:15 | 9:30 | 9:45 | 10:00 | 10:15 | 10:30 | 10:45 | 11:00 |
本儀表 | 8.184 | 8.012 | 8.189 | 8.203 | 8.021 | 8.086 | 8.012 | 8.103 | 8.085 |
孔板流量 | 8.2 | 8.2 | 8.2 | 8.2 | 8.1 | 8.1 | 8.1 | 8.1 | 8.1 |
誤差(%) | 0.195 | 2.293 | 0.134 | -0.04 | 0.975 | 0.173 | 1.086 | -0.037 | 0.185 |