淺談流量計(jì)的發(fā)展及現(xiàn)狀
流量測(cè)量方法和儀表的種類繁多,分類方法也很多。至今為止,可供工業(yè)用的流量?jī)x表種類達(dá)60種之多。品種如此之多的原因就在于至今還沒找到一種對(duì)任何流體、任何量程、任何流動(dòng)狀態(tài)以及任何使用條件都適用的流量?jī)x表。
這60多種流量?jī)x表,每種產(chǎn)品都有它特定的適用性,也都有它的局限性。按測(cè)量對(duì)象劃分就有封閉管道和明渠兩大類;按測(cè)量目的又可分為總量測(cè)量和流量測(cè)量,其儀表分別稱作總量表和流量計(jì)。
總量表測(cè)量一段時(shí)間內(nèi)流過管道的流量,是以短暫時(shí)間內(nèi)流過的總量除以該時(shí)間的商來表示,實(shí)際上流量計(jì)通常亦備有累積流量裝置,做總量表使用,而總量表亦備有流量發(fā)訊裝置。因此,以嚴(yán)格意義來分流量計(jì)和總量表已無實(shí)際意義。
按測(cè)量原理分有力學(xué)原理、熱學(xué)原理、聲學(xué)原理、電學(xué)原理、光學(xué)原理、原子物理學(xué)原理等。
本文按照目前*流行、*廣泛的分類法,即分為:容積式流量計(jì)、差壓式流量計(jì)、浮子流量計(jì)、渦輪流量計(jì)、電磁流量計(jì)、流體振蕩流量計(jì)中的渦街流量計(jì)、質(zhì)量流量計(jì)和插入式流量計(jì)來分別闡述各種流量計(jì)的原理、特點(diǎn)、應(yīng)用概況及國內(nèi)外的發(fā)展情況。
一、概述
傳統(tǒng)的流體整流器經(jīng)長(zhǎng)期的研究與實(shí)踐已趨于成熟,它一般采用阻隔體分隔流道來調(diào)整管道內(nèi)的速度分布,以達(dá)到整流的目的;這一類整流器主要用于實(shí)驗(yàn)室和流量標(biāo)定系統(tǒng)。但這種方法易引起污物堵塞和增加阻力損失,所以在工業(yè)管道上很少采用。
渦街流量計(jì)由于其獨(dú)特的性能,一直受到人們重視,并己到了廣泛的應(yīng)用,但仍有兩個(gè)方面的問題困擾著人們,一是由于儀表上游管道阻流件的干擾,流場(chǎng)發(fā)生畸變,影響旋渦正常撥離。為了克服流場(chǎng)擾動(dòng),儀表前需要配裝較長(zhǎng)直管道(一般為15~40倍的工藝管內(nèi)徑的長(zhǎng)度),而在實(shí)際現(xiàn)場(chǎng)是很難滿足的。二是,渦街流量計(jì)主要特點(diǎn)之一是量程寬,一般在10:1左右,應(yīng)該說這樣寬的測(cè)量范圍應(yīng)屬比較優(yōu)良的性能,但在實(shí)際工業(yè)應(yīng)用中,*大流量遠(yuǎn)低于儀表的上限值,*小流量又往往會(huì)低于儀表的下限值,一些儀表經(jīng)常工作在下限流量附近,造成儀表的計(jì)量準(zhǔn)確度下降,這時(shí)信號(hào)較弱,儀表的抗干擾能力也下降。為了測(cè)量小流量,人們往往采用內(nèi)腔形狀為園臺(tái)的傳統(tǒng)變徑管,經(jīng)過縮徑提高測(cè)量處的流速。使渦街流量計(jì)工作在正常流速范圍內(nèi),但這種變徑方式,結(jié)構(gòu)尺寸大(一般長(zhǎng)度為工藝管內(nèi)徑的3~5倍),同時(shí),由于流體流經(jīng)變徑管,在變徑處產(chǎn)生大量旋轉(zhuǎn)流團(tuán),增大局部阻力損失,也使流場(chǎng)發(fā)生畸變。所以必須在變徑管與儀表之間加裝大于15倍工藝管內(nèi)徑長(zhǎng)度的直管道進(jìn)行整流,且增加了沿程阻力損失(如圖1所示),這種方法增加施工成本,也給加工、安裝帶來不便。
(圖1)縱端面采用特殊形線的變徑整流器(己申報(bào)國家**),具有整流,提高流速及改變流速分布的多重作用,其結(jié)構(gòu)尺寸小,長(zhǎng)度僅為工藝管內(nèi)徑的1/3,可以直接卡裝在儀表的兩端,不僅不需要另外附加直管道,而且可以降低儀表對(duì)上游直管道的要求。實(shí)驗(yàn)表明:儀表上游阻力件為一個(gè)平面內(nèi)的兩個(gè)90°彎頭在一般情況下,渦街流量計(jì)上游側(cè)應(yīng)加裝大于20倍管道內(nèi)徑長(zhǎng)度的直管道,而渦街流量計(jì)加裝了變徑整流器大大降低了對(duì)上游測(cè)直管道長(zhǎng)度的要求,其阻力遠(yuǎn)遠(yuǎn)小于傳統(tǒng)的變徑管。更主要的是,可使下限流速降為原來的1/3,量程比提高到15:1以上。’
二、原理及分析
首先應(yīng)該指出,傳統(tǒng)的變徑管可以經(jīng)過縮徑,并配以較小口徑的流量計(jì)來達(dá)到測(cè)量小流量的目的,但是這種方法不可能擴(kuò)大儀表的量程比,因?yàn)樗⒛└淖児艿赖牧魉俜植紶顟B(tài)。我們知道,渦街流量計(jì)的理論及推導(dǎo)是基于在無窮大的均勻流場(chǎng)中得到的,而在實(shí)際封閉圓管中,卻是非均勻流場(chǎng),橫斷面的流速分布是一回轉(zhuǎn)拋物面,雖然選擇合理的柱型,使柱體兩側(cè)弓形面的流速分布均勻,但實(shí)際上,工藝管道上回轉(zhuǎn)拋物面的流速分布的影響是客觀存在的。實(shí)驗(yàn)表明在比較大的流量時(shí),這個(gè)影響較小,或說這個(gè)影響在允許的范圍內(nèi);但隨著流量的下降,這個(gè)影響越來越大,從大量標(biāo)定數(shù)據(jù)看,儀表常數(shù)總是隨著流量的減小而增大。這說明取樣點(diǎn)的流速與平均流速差異越來越大。
采用了變徑整流器后(見圖2),由于縮經(jīng)斷面的流速在逐漸增大,在斷面上各點(diǎn)流速的增加是不一樣的,靠近中心流速增加小,而靠近喉徑邊沿處流速增加大。
設(shè)整流器進(jìn)口處壓力為P1,平均流速為V1,某點(diǎn)上的速度不均勻度為U1,出口處壓力為P2,平均流速為V2,通過進(jìn)口處某點(diǎn)同**線,在出口處的速度不均勻度為U2,沿該流線,由伯努利方程得:
